LogoLogo
  • TJUAV Documentation
  • Documentation
    • What is TJUAV?
      • Subsystems
      • Competition Details (2021)
    • How to Use Gitbook
    • Table of Contents
  • RC Guide
    • Introduction
    • Aerodynamics & Flight
      • Forces of Flight
    • RC Electronics
      • Comms
      • Power / Propulsion System
        • Batteries / Battery Chargers
        • ESCs
        • Motors
    • Control Surfaces
    • Propellers
      • Function
      • CW and CCW Propellers
      • Thrust Table
    • Flight Simulations
    • Tools
      • Laser Cutter
      • 3D Printer
    • Getting Certified
  • Software
    • Programming
      • Git
      • Python
      • JS
      • VSCode
      • Mission Planner
    • Mechanical
      • Fusion360
        • Installation
        • Fusion Teams
        • Sketches
        • Sketch Tools
        • Parameters
        • Timeline
        • Solid Tools
        • Components
        • Joints & Assemblies
        • Add-Ins
        • Good Practice
      • AutoCAD
      • Cura
        • Initial Setup
        • Profiles
        • Quality
        • Shell
        • Infill
        • Material
        • Speed
        • Travel
        • Cooling
        • Supports
        • Adhesion
        • Experimental
    • Website
      • Code Documentation
      • Heroku Usage
      • AWS Usage
      • GitHub Pages
  • Hardware
    • Computers
    • Radios
      • RFD900x
      • Ubiquiti Bullet and Powerbeam M2
    • Cameras
      • Gphoto2
      • Sony α5000/α5100
      • See3Cam_CU135
      • Arducam 4
    • Power
  • Mechanical Progress
    • Airframes
      • Razgriz
      • Hyperion
      • Testing Plane
      • Avalon
        • Avalon Mk.1
        • Avalon Mk.2
    • UGVs
      • Electrical System
      • Drop Mechanism
      • Speed Car Super Speed
      • SPARTA
  • Programming Progress
    • Computer Vision
      • Preprocessing Techniques
      • Map Stitching
        • SIFT
      • Detection / Classification
        • Canny / Contours
        • Blob Detection
        • KMeans
        • Mean Shift Filter
        • RotNet
    • Autopilot
      • A*
      • RRT*
      • Genetic Algs
      • Spline Navigation
  • Master Code
    • GroundStation
      • Frontend
      • Backend
    • Computer Vision
      • Image Capturing
      • Map Stitching
      • Detection
      • Classification
    • Autopilot
    • Comms
      • Image Compression
      • Packet Format
Powered by GitBook
On this page
Edit on GitHub
Export as PDF
  1. Mechanical Progress
  2. UGVs

Drop Mechanism

PreviousElectrical SystemNextSpeed Car Super Speed

Last updated 4 years ago

This is the current (as of 3/14/2021) drop mechanism for SPARTA (and hopefully future UGVs too). For a detailed view of the inner workings, check the CAD file and play around with the animation.

Basics:

  • An angular servo manipulates two opposing steel bars in a linear fashion.

  • These bars, when in the closed position, stick into the hole of the sled tip seen in .

  • This tip is held in by the frictional forces of the pin (also seen in ).

  • The tip also holds the parachute strings.

  • When the UGV touches the ground, the sled will swing backward when it starts driving, so the pin will then be pushed out of the hole and SPARTA will ditch its parachute (otherwise, the high winds at the competition will drag the UGV like Mary Poppins and her umbrella)

  • This mechanism box will be mounted directly onto the wing spars.

Testing: So far, the pin has a 100% success rate at holding the parachute under normal conditions, a 100% success rate at popping out on a relatively even surface (grass testing needed), and the box has a 100% success rate for holding and dropping the UGV.

SPARTA
SPARTA