LogoLogo
  • TJUAV Documentation
  • Documentation
    • What is TJUAV?
      • Subsystems
      • Competition Details (2021)
    • How to Use Gitbook
    • Table of Contents
  • RC Guide
    • Introduction
    • Aerodynamics & Flight
      • Forces of Flight
    • RC Electronics
      • Comms
      • Power / Propulsion System
        • Batteries / Battery Chargers
        • ESCs
        • Motors
    • Control Surfaces
    • Propellers
      • Function
      • CW and CCW Propellers
      • Thrust Table
    • Flight Simulations
    • Tools
      • Laser Cutter
      • 3D Printer
    • Getting Certified
  • Software
    • Programming
      • Git
      • Python
      • JS
      • VSCode
      • Mission Planner
    • Mechanical
      • Fusion360
        • Installation
        • Fusion Teams
        • Sketches
        • Sketch Tools
        • Parameters
        • Timeline
        • Solid Tools
        • Components
        • Joints & Assemblies
        • Add-Ins
        • Good Practice
      • AutoCAD
      • Cura
        • Initial Setup
        • Profiles
        • Quality
        • Shell
        • Infill
        • Material
        • Speed
        • Travel
        • Cooling
        • Supports
        • Adhesion
        • Experimental
    • Website
      • Code Documentation
      • Heroku Usage
      • AWS Usage
      • GitHub Pages
  • Hardware
    • Computers
    • Radios
      • RFD900x
      • Ubiquiti Bullet and Powerbeam M2
    • Cameras
      • Gphoto2
      • Sony α5000/α5100
      • See3Cam_CU135
      • Arducam 4
    • Power
  • Mechanical Progress
    • Airframes
      • Razgriz
      • Hyperion
      • Testing Plane
      • Avalon
        • Avalon Mk.1
        • Avalon Mk.2
    • UGVs
      • Electrical System
      • Drop Mechanism
      • Speed Car Super Speed
      • SPARTA
  • Programming Progress
    • Computer Vision
      • Preprocessing Techniques
      • Map Stitching
        • SIFT
      • Detection / Classification
        • Canny / Contours
        • Blob Detection
        • KMeans
        • Mean Shift Filter
        • RotNet
    • Autopilot
      • A*
      • RRT*
      • Genetic Algs
      • Spline Navigation
  • Master Code
    • GroundStation
      • Frontend
      • Backend
    • Computer Vision
      • Image Capturing
      • Map Stitching
      • Detection
      • Classification
    • Autopilot
    • Comms
      • Image Compression
      • Packet Format
Powered by GitBook
On this page
Edit on GitHub
Export as PDF
  1. Software
  2. Mechanical
  3. Cura

Shell

PreviousQualityNextInfill

Last updated 4 years ago

I've never used most of these, but here are the important ones:

Wall Thickness: Line Width (Quality) * Wall Line Count. Basically, the outer shell of the 3D print has a certain thickness before the Infill starts, you get to set this thickness with this setting. A higher wall thickness would lead to a stronger print.

Top/Bottom Thickness: Same idea, do I really have to explain this?

Top/Bottom Pattern: The pattern of the layer creation (I've never changed this, but maybe Concentric would be better for circular parts)

Enable Ironing: This is a really non-important setting, but it literally just makes the print slower and maybe marginally smoother. I tried it once but wasn't noticing any major differences. It works by using the hot extruder to remelt the plastic of the top layer to smoothen the layer lines, purely aesthetic, no structural use.